Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox-Inactive Peptide Disrupting Trx1-Ask1 Interaction for Selective Activation of Stress Signaling.

Identifieur interne : 000223 ( Main/Exploration ); précédent : 000222; suivant : 000224

Redox-Inactive Peptide Disrupting Trx1-Ask1 Interaction for Selective Activation of Stress Signaling.

Auteurs : Dilini N. Kekulandara [États-Unis] ; Shima Nagi [États-Unis] ; Hyosuk Seo [États-Unis] ; Christine S. Chow [États-Unis] ; Young-Hoon Ahn [États-Unis]

Source :

RBID : pubmed:29261301

Descripteurs français

English descriptors

Abstract

Thioredoxin 1 (Trx1) and glutaredoxin 1 (Grx1) are two ubiquitous redox enzymes that are central for redox homeostasis but also are implicated in many other processes, including stress sensing, inflammation, and apoptosis. In addition to their enzymatic redox activity, a growing body of evidence shows that Trx1 and Grx1 play regulatory roles via protein-protein interactions with specific proteins, including Ask1. The currently available inhibitors of Trx1 and Grx1 are thiol-reactive electrophiles or disulfides that may suffer from low selectivity because of their thiol reactivity. In this report, we used a phage peptide library to identify a 7-mer peptide, 2GTP1, that binds to both Trx1 and Grx1. We further showed that a cell-permeable derivative of 2GTP1, TAT-2GTP1, disrupts the Trx1-Ask1 interaction, which induces Ask1 phosphorylation with subsequent activation of JNK, stabilization of p53, and reduced viability of cancer cells. Notably, as opposed to a disulfide-derived Trx1 inhibitor (PX-12), TAT-2GTP1 was selective for activating the Ask1 pathway without affecting other stress signaling pathways, such as endoplasmic reticulum stress and AMPK activation. Overall, 2GTP1 will serve as a useful probe for investigating protein interactions of Trx1.

DOI: 10.1021/acs.biochem.7b01083
PubMed: 29261301
PubMed Central: PMC5856478


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox-Inactive Peptide Disrupting Trx1-Ask1 Interaction for Selective Activation of Stress Signaling.</title>
<author>
<name sortKey="Kekulandara, Dilini N" sort="Kekulandara, Dilini N" uniqKey="Kekulandara D" first="Dilini N" last="Kekulandara">Dilini N. Kekulandara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202</wicri:regionArea>
<wicri:noRegion>Michigan 48202</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nagi, Shima" sort="Nagi, Shima" uniqKey="Nagi S" first="Shima" last="Nagi">Shima Nagi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202</wicri:regionArea>
<wicri:noRegion>Michigan 48202</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seo, Hyosuk" sort="Seo, Hyosuk" uniqKey="Seo H" first="Hyosuk" last="Seo">Hyosuk Seo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202</wicri:regionArea>
<wicri:noRegion>Michigan 48202</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chow, Christine S" sort="Chow, Christine S" uniqKey="Chow C" first="Christine S" last="Chow">Christine S. Chow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202</wicri:regionArea>
<wicri:noRegion>Michigan 48202</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ahn, Young Hoon" sort="Ahn, Young Hoon" uniqKey="Ahn Y" first="Young-Hoon" last="Ahn">Young-Hoon Ahn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202</wicri:regionArea>
<wicri:noRegion>Michigan 48202</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29261301</idno>
<idno type="pmid">29261301</idno>
<idno type="doi">10.1021/acs.biochem.7b01083</idno>
<idno type="pmc">PMC5856478</idno>
<idno type="wicri:Area/Main/Corpus">000277</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000277</idno>
<idno type="wicri:Area/Main/Curation">000277</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000277</idno>
<idno type="wicri:Area/Main/Exploration">000277</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox-Inactive Peptide Disrupting Trx1-Ask1 Interaction for Selective Activation of Stress Signaling.</title>
<author>
<name sortKey="Kekulandara, Dilini N" sort="Kekulandara, Dilini N" uniqKey="Kekulandara D" first="Dilini N" last="Kekulandara">Dilini N. Kekulandara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202</wicri:regionArea>
<wicri:noRegion>Michigan 48202</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nagi, Shima" sort="Nagi, Shima" uniqKey="Nagi S" first="Shima" last="Nagi">Shima Nagi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202</wicri:regionArea>
<wicri:noRegion>Michigan 48202</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seo, Hyosuk" sort="Seo, Hyosuk" uniqKey="Seo H" first="Hyosuk" last="Seo">Hyosuk Seo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202</wicri:regionArea>
<wicri:noRegion>Michigan 48202</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chow, Christine S" sort="Chow, Christine S" uniqKey="Chow C" first="Christine S" last="Chow">Christine S. Chow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202</wicri:regionArea>
<wicri:noRegion>Michigan 48202</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ahn, Young Hoon" sort="Ahn, Young Hoon" uniqKey="Ahn Y" first="Young-Hoon" last="Ahn">Young-Hoon Ahn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202</wicri:regionArea>
<wicri:noRegion>Michigan 48202</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antineoplastic Agents (chemistry)</term>
<term>Antineoplastic Agents (pharmacology)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Cell Membrane Permeability (MeSH)</term>
<term>Cell Survival (drug effects)</term>
<term>Drug Screening Assays, Antitumor (MeSH)</term>
<term>Endoplasmic Reticulum Stress (drug effects)</term>
<term>Enzyme Activation (drug effects)</term>
<term>Enzymes, Immobilized (MeSH)</term>
<term>Glutaredoxins (MeSH)</term>
<term>HEK293 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>MAP Kinase Kinase Kinase 5 (antagonists & inhibitors)</term>
<term>MAP Kinase Kinase Kinase 5 (chemistry)</term>
<term>MAP Kinase Kinase Kinase 5 (physiology)</term>
<term>MAP Kinase Signaling System (drug effects)</term>
<term>NADP (analysis)</term>
<term>Oligopeptides (isolation & purification)</term>
<term>Oligopeptides (pharmacology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peptide Library (MeSH)</term>
<term>Phosphorylation (drug effects)</term>
<term>Protein Binding (drug effects)</term>
<term>Protein Interaction Mapping (MeSH)</term>
<term>Protein Processing, Post-Translational (drug effects)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Stress, Physiological (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (effets des médicaments et des substances chimiques)</term>
<term>Antinéoplasiques (composition chimique)</term>
<term>Antinéoplasiques (pharmacologie)</term>
<term>Banque de peptides (MeSH)</term>
<term>Cartographie d'interactions entre protéines (MeSH)</term>
<term>Cellules HEK293 (MeSH)</term>
<term>Enzymes immobilisées (MeSH)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Liaison aux protéines (effets des médicaments et des substances chimiques)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>MAP Kinase Kinase Kinase 5 (antagonistes et inhibiteurs)</term>
<term>MAP Kinase Kinase Kinase 5 (composition chimique)</term>
<term>MAP Kinase Kinase Kinase 5 (physiologie)</term>
<term>Maturation post-traductionnelle des protéines (effets des médicaments et des substances chimiques)</term>
<term>NADP (analyse)</term>
<term>Oligopeptides (isolement et purification)</term>
<term>Oligopeptides (pharmacologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Perméabilité des membranes cellulaires (MeSH)</term>
<term>Phosphorylation (effets des médicaments et des substances chimiques)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Stress du réticulum endoplasmique (effets des médicaments et des substances chimiques)</term>
<term>Stress physiologique (physiologie)</term>
<term>Survie cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Système de signalisation des MAP kinases (effets des médicaments et des substances chimiques)</term>
<term>Tests de criblage d'agents antitumoraux (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>NADP</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>MAP Kinase Kinase Kinase 5</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antineoplastic Agents</term>
<term>MAP Kinase Kinase Kinase 5</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Oligopeptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Reactive Oxygen Species</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antineoplastic Agents</term>
<term>Oligopeptides</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>NADP</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>MAP Kinase Kinase Kinase 5</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Antinéoplasiques</term>
<term>MAP Kinase Kinase Kinase 5</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Survival</term>
<term>Endoplasmic Reticulum Stress</term>
<term>Enzyme Activation</term>
<term>MAP Kinase Signaling System</term>
<term>Phosphorylation</term>
<term>Protein Binding</term>
<term>Protein Processing, Post-Translational</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Liaison aux protéines</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Phosphorylation</term>
<term>Stress du réticulum endoplasmique</term>
<term>Survie cellulaire</term>
<term>Système de signalisation des MAP kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Oligopeptides</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antinéoplasiques</term>
<term>Oligopeptides</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>MAP Kinase Kinase Kinase 5</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>MAP Kinase Kinase Kinase 5</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line, Tumor</term>
<term>Cell Membrane Permeability</term>
<term>Drug Screening Assays, Antitumor</term>
<term>Enzymes, Immobilized</term>
<term>Glutaredoxins</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Peptide Library</term>
<term>Protein Interaction Mapping</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Banque de peptides</term>
<term>Cartographie d'interactions entre protéines</term>
<term>Cellules HEK293</term>
<term>Enzymes immobilisées</term>
<term>Glutarédoxines</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Oxydoréduction</term>
<term>Perméabilité des membranes cellulaires</term>
<term>Tests de criblage d'agents antitumoraux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thioredoxin 1 (Trx1) and glutaredoxin 1 (Grx1) are two ubiquitous redox enzymes that are central for redox homeostasis but also are implicated in many other processes, including stress sensing, inflammation, and apoptosis. In addition to their enzymatic redox activity, a growing body of evidence shows that Trx1 and Grx1 play regulatory roles via protein-protein interactions with specific proteins, including Ask1. The currently available inhibitors of Trx1 and Grx1 are thiol-reactive electrophiles or disulfides that may suffer from low selectivity because of their thiol reactivity. In this report, we used a phage peptide library to identify a 7-mer peptide, 2GTP1, that binds to both Trx1 and Grx1. We further showed that a cell-permeable derivative of 2GTP1, TAT-2GTP1, disrupts the Trx1-Ask1 interaction, which induces Ask1 phosphorylation with subsequent activation of JNK, stabilization of p53, and reduced viability of cancer cells. Notably, as opposed to a disulfide-derived Trx1 inhibitor (PX-12), TAT-2GTP1 was selective for activating the Ask1 pathway without affecting other stress signaling pathways, such as endoplasmic reticulum stress and AMPK activation. Overall, 2GTP1 will serve as a useful probe for investigating protein interactions of Trx1.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29261301</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>57</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>02</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox-Inactive Peptide Disrupting Trx1-Ask1 Interaction for Selective Activation of Stress Signaling.</ArticleTitle>
<Pagination>
<MedlinePgn>772-780</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.biochem.7b01083</ELocationID>
<Abstract>
<AbstractText>Thioredoxin 1 (Trx1) and glutaredoxin 1 (Grx1) are two ubiquitous redox enzymes that are central for redox homeostasis but also are implicated in many other processes, including stress sensing, inflammation, and apoptosis. In addition to their enzymatic redox activity, a growing body of evidence shows that Trx1 and Grx1 play regulatory roles via protein-protein interactions with specific proteins, including Ask1. The currently available inhibitors of Trx1 and Grx1 are thiol-reactive electrophiles or disulfides that may suffer from low selectivity because of their thiol reactivity. In this report, we used a phage peptide library to identify a 7-mer peptide, 2GTP1, that binds to both Trx1 and Grx1. We further showed that a cell-permeable derivative of 2GTP1, TAT-2GTP1, disrupts the Trx1-Ask1 interaction, which induces Ask1 phosphorylation with subsequent activation of JNK, stabilization of p53, and reduced viability of cancer cells. Notably, as opposed to a disulfide-derived Trx1 inhibitor (PX-12), TAT-2GTP1 was selective for activating the Ask1 pathway without affecting other stress signaling pathways, such as endoplasmic reticulum stress and AMPK activation. Overall, 2GTP1 will serve as a useful probe for investigating protein interactions of Trx1.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kekulandara</LastName>
<ForeName>Dilini N</ForeName>
<Initials>DN</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nagi</LastName>
<ForeName>Shima</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seo</LastName>
<ForeName>Hyosuk</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chow</LastName>
<ForeName>Christine S</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ahn</LastName>
<ForeName>Young-Hoon</ForeName>
<Initials>YH</Initials>
<Identifier Source="ORCID">0000-0003-0765-3074</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL131740</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>01</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000970">Antineoplastic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004800">Enzymes, Immobilized</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516005">GLRX protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019151">Peptide Library</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.25</RegistryNumber>
<NameOfSubstance UI="D048848">MAP Kinase Kinase Kinase 5</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.25</RegistryNumber>
<NameOfSubstance UI="C482858">MAP3K5 protein, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000970" MajorTopicYN="N">Antineoplastic Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002463" MajorTopicYN="N">Cell Membrane Permeability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004354" MajorTopicYN="N">Drug Screening Assays, Antitumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059865" MajorTopicYN="N">Endoplasmic Reticulum Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004800" MajorTopicYN="N">Enzymes, Immobilized</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048848" MajorTopicYN="N">MAP Kinase Kinase Kinase 5</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020935" MajorTopicYN="N">MAP Kinase Signaling System</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009842" MajorTopicYN="N">Oligopeptides</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019151" MajorTopicYN="Y">Peptide Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025941" MajorTopicYN="N">Protein Interaction Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29261301</ArticleId>
<ArticleId IdType="doi">10.1021/acs.biochem.7b01083</ArticleId>
<ArticleId IdType="pmc">PMC5856478</ArticleId>
<ArticleId IdType="mid">NIHMS945612</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Free Radic Biol Med. 2014 Feb;67:10-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24140863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Enzyme Inhib Med Chem. 2013 Jun;28(3):456-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22299579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Nov 1;19(13):1539-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23397885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8438-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10411893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2012 Mar;3(3):314-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22447839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Dec;27(23):8152-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17724081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Transl Immunology. 2016 Dec 23;5(12 ):e121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28090323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):392-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2016 Oct;283(20):3821-3838</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27588831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Aug;20(16):3628-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19570911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2014 Sep 17;588(18):3361-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25084564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1997 Oct 10;236(1):181-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9344598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2017 Feb 15;77(4):926-936</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28011619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22436748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2016 Aug;8:68-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26760912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Oct;18(10):3903-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17652454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Jan 1;52(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22027063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jul 25;45(29):8978-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16846241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest New Drugs. 2013 Jun;31(3):631-641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22711542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Apr;44(4):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20539014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2004 Aug;35(8):1000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:2958</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24389582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2012 Jun 15;26(12):1268-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22713868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2016 Jul 19;12 (8):2471-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27216279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:335-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19691428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 22;285(43):33154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9050839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Detect Prev. 2000;24(1):53-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10757123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Jun 2;292(22):9136-9149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28411237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 21;275(3):1902-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10636891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2005 Apr;35(4):373-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15804610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 8;280(27):25388-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Nov 23;25(55):7305-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16785993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10541-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lab Clin Med. 2003 Jul;142(1):46-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12878985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1996 Aug 25;178(1):179-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8812119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2001 Oct;7(10):3087-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11595699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 27;284(13):8233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2000 Apr;31(4):475-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10821495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Apr;21(8):2743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Aug 1;373(Pt 3):845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12723971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Aug 29;289(35):24463-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25037217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 May 1;17(9):2596-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9564042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 10;274(50):35809-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10585464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 Feb;36(2):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Oct 10;254(19):9627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">385588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1996 Jan 15;156(2):765-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8543831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 2006 Dec;16(6):420-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17092741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2096-E2105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28242696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Res. 1996 Nov-Dec;16(6B):3459-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9042207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jul 3;46(26):7765-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17555331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 31;289(5):3066-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24338024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Relat Cancer. 2006 Jun;13(2):293-325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16728565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2017 Aug 10;401:1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28483515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2013 Feb 14;56(3):1301-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23327656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2005 Aug;26(8):398-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15990177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Aug 4;281(31):21884-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Oct;63:313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23747528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1998 Apr 1;55(7):987-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9605422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Dec 12;283(50):34541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18948261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jan 3;275(5296):90-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8974401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Chemother Pharmacol. 2011 Mar;67(3):503-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20461382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2015 Sep 22;6(28):25506-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26325518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Kekulandara, Dilini N" sort="Kekulandara, Dilini N" uniqKey="Kekulandara D" first="Dilini N" last="Kekulandara">Dilini N. Kekulandara</name>
</noRegion>
<name sortKey="Ahn, Young Hoon" sort="Ahn, Young Hoon" uniqKey="Ahn Y" first="Young-Hoon" last="Ahn">Young-Hoon Ahn</name>
<name sortKey="Chow, Christine S" sort="Chow, Christine S" uniqKey="Chow C" first="Christine S" last="Chow">Christine S. Chow</name>
<name sortKey="Nagi, Shima" sort="Nagi, Shima" uniqKey="Nagi S" first="Shima" last="Nagi">Shima Nagi</name>
<name sortKey="Seo, Hyosuk" sort="Seo, Hyosuk" uniqKey="Seo H" first="Hyosuk" last="Seo">Hyosuk Seo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000223 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000223 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29261301
   |texte=   Redox-Inactive Peptide Disrupting Trx1-Ask1 Interaction for Selective Activation of Stress Signaling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29261301" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020